
8

SUMMARY

As modern software systems increase in complexity and size, the

challenges of finding and fixing software defects, especially vulnerabilities,

have increased. Traditional approaches, like static code analysis tools and

manual code reviews, are usually not effective for large-scale and complex

codebases. These approaches normally yield a high false-positive rate and

cannot detect runtime vulnerabilities, which means critical defects remain

undetected and system security is compromised.

It addresses the challenge through the presentation of VulGraphNet,

a new defect prediction model using a combined approach of static and

dynamic analysis with Graph Neural Networks. This model will rely on a

multi-level graph representation: Control Flow Graphs, Data Flow Graphs,

and Abstract Syntax Trees to capture interdependent relations within the

code in complex ways. VulGraphNet provides a more holistic solution to

finding defects resulting from complex interactions among various

software components by integrating static analysis, which identifies

structural vulnerabilities in the code, and dynamic analysis, which monitors

runtime behavior.

Among the main contributions, this work develops machine learning

techniques in integrating Graph Neural Networks for improving feature

extraction. GNNs naturally fit in analyzing graph-structured data, thus

empowering the model to learn such complex patterns and associations



9

across different parts of a program. This deep feature learning allows the

identification of potential security vulnerabilities that may go unnoticed

using conventional approaches, especially those stemming from intricate

dependencies and context-sensitive behaviors. Besides, VulGraphNet also

employs multi-scale feature fusion techniques, enhancing the

generalization ability of the model and making it applicable to more

software projects, from small-scaled systems to large, distributed

applications.

In this paper, some publicly available vulnerability datasets are used

to conduct several experiments on the proposed VulGraphNet model. The

results have shown outstanding performance with both detection accuracy

and coverage. This is because combining static and dynamic analysis

reduces false positives and false negatives, which increases the precision

and recall of the detection of defects. This leads to the most effective and

reliable method of vulnerability prediction, which is considered a very

important process in software development regarding security breaches and

maintenance cost reduction.

The results of the present study bring into relief the relevance of

integrating different techniques of analysis, which is necessary to overcome

the limitations identified within current methodologies for vulnerability

detection. The integration of dynamic analysis with machine learning-based

static analysis enables a more robust framework in the detection of



10

complex vulnerabilities depending on both the structure and execution

behavior of the code. In the end, this research provides a contribution to the

advancement of software security by providing an accurate, efficient, and

scalable tool for defect detection at an early stage.

In the end, VulGraphNet represents a significant enhancement to

software vulnerability detection by harnessing the strengths of static and

dynamic analysis, Graph Neural Networks, and multi-scale feature fusion

for more accurate and scalable vulnerability detection systems. This work

will contribute not only to enhancing the efficiency of software defect

identification but also pave the way for further research into automated

software security tools.

Keyword: Software Vulnerability Detection, Graph Neural Networks

(GNN), Static Analysis, Graph Attention Networks (GAT).




